

An Evaluation of Protocols for UAV Science Applications

William D. Ivancic

NASA Glenn Research Center

David E. Stewart

Verizon Federal Systems

Donald V. Sullivan

Patrick E. Finch

NASA Ames Research Center

COMMUNICATIONS ARCHITECTURES

Security

- NASA's Global Hawks command and control communications is completely separate from the experimental payloads' command and control.
 - Enables different security methodologies to be deployed for each system
 - The security required for payload operations becomes much less stringent
 - Enables greater flexibility of payload deployment
 - Enables direct real-time access to payload instrumentation by the various principle investigators.
- Payload Security
 - Currently User access accounts and Secure Shell (SSH)
 - Currently no requirement for Internet Protocol Security (IPsec) between the ground control and aircraft payload as this is a private link.

Satellite Communications Characteristics

- KU-Band satellite communications
 - 2 to 8 Mbps bidirectional links
 - Modems capable of 50 Mbps (but cost prohibitive)
 - Connectivity demonstrated to 75 degrees latititude
- Near Error Free Link
- Approximately 600 msec round trip times (RTT)
 - Includes satellite link delay, ground delay and processing.

Current Communication Architecture

- Global Hawk ground station is located at Dryden as are the Principle Investigators
 - No multi-hop store and forward.
 - Single control loop
 - Delay is up to 600 msec round trip time due to Geostationary Satellite delay.

Venture Mission

(Atlantic Campaign)

- Global Hawk ground station is located at near mission and PIs are collocated near ground station.
 - No multi-hop store and forward or network mobility.
 - Delay is up to 600 msec round trip time due to Geostationary Satellite delay.
 - Single control loop

Future Deployment Possibilities

- Aircraft Operators and Principle Investigators located at Dryden or remote
 - Some PIs with payload
- Ground Station at Remote Location
 - Simple two-stage store and forward.
 - No need for special store and forward protocol

Collocated Pls

• Pros

- Eases coordination between PIs as well as between PIs and aircraft controllers
- Ensures commitment
- Builds teams and teamwork
- Cross pollination of ideas
- Collocated with Global Hawk ground base provides access to payload for pre-flight checkout.
 - But, that probably does not have to be everybody and probably does not have to be at the ground station.

Cons

- Travel time
- Travel costs
- Away from home

The technology exists to allow Principle Investigators to operate from remote locations.

Protocol Requirements

- Provide a good user experience
 - Get the required science data down in a timely manner
 - Ease of use and maximum delivery of science data
- Remain as indistinguishable as possible from existing Internet protocols.
 - Allows the scientists to test their instruments and data collecting in the lab, on the ground, and in flight using the same protocols, commands, and scripts.
 - Currently used Protocols
 - Transmission Control Protocol (TCP) based protocols
 - Telnet, Secure Shell (SSH), and file transfer protocols (i.e. File Transfer Protocol (FTP), Secure Copy Protocol (SCP), Secure File Transfer Protocol (SFTP), Remote Synchronization (RSYNC)

Research Requirements

- Lightning Instrumentation Package (LIP)
 - Measures lightning, electric fields, electric field changes, and air conductivity.
 - The data throughput requirement is kbps
- High Altitude MMIC Sounding Radiometer (HAMSR)
 - Provides measurements that can be used to infer the 3-D distribution of temperature, water vapor, and cloud liquid water in the atmosphere.
 - Data requirements are approximately 200 Mbytes over duration of mission (24 hours) with instantaneous throughputs of 10s to 100s of kbps.
 - Current system uses RSYNC over TCP to synchronize the ground database with payload database
- High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)
 - HIWRAP is able to image winds by measuring volume backscattering from clouds and precipitation.
 - Data requirements for GRIP was approximately 1 Gigabyte per minute (approximately 130 Mbps) which vastly exceed available link rate.
 - By deploying such onboard processing on future flights, the data-rate should be reduced by a factor of about 15, or 66 MB per minute (8.8 Mbps link requirement).
 - Using FPGA-based processing, Quicklook products such as images would be produced that would greatly reduce the data downlink requirements to well within the current bandwidth of the Ku-band communication system.

Earth Science Technology Office

 Operators currently use telnet or SSH to check payload status. Data is distributed once the Global Hawk returns (see Saratoga Transport Protocol)

TCP Operation vs. UDP Rate-base Operation

Theoretical Throughput of TCP vs. Rate-Based Protocols for 1024 byte packets

UDP-base Transport Protocols

- Operate at line-rate or at some set rate-limit.
- Generally assume no congestion and thus deploy no congestion control algorithms.
 - No need to probe the system to determine available bandwidth or to reduce data-rates when losses occur as all losses are assumed to be due to errors rather than congestion.
- UDP-based transport protocols utilize a negative acknowledgement algorithm (NACK) for transport reliability
- UDP-based transport protocols
 - Saratoga
 - Initially Developed by Surrey Satellite Technology Limited for reliable, efficient image transmission from space to ground
 - Plans for use to transport massive radio astronomy data sets (Terabyte per day) generated in the Australian Square Kilometer Array Pathfinder (ASKAP)
 - Negative Acknowledgement (NACK) Oriented Reliable Multicast (NORM)
 - Initially developed by the Naval Research Laboratory (NRL)
 - Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP).
 - Developed for Space Communication
 - Very heavy state maintenance necessary to suspend timers
 - A mix of application, transport protocols, and data-link
 - Licklider Transmission Protocol (LTP)
 - Origins are CFDP with the intent to implement layering (heavy state maintenance)
 - Target use is Space Communications

Protocol Enhancing Proxies (PEPs)

- Used to improve TCP performance over long delays.
- Break the end-to-end control loop into multiple control loops such that one can utilize a protocol that performs well over long-delay, error prone links without modifications to the end users system (protocols).
- PEPs have known problems.
 - Require a reasonable amount of additional processing,
 - Often require special configuration and tuning
 - Must see TCP packets so IPsec is problematic
- Note: PEPs will not help interactive communications, as PEPs cannot remove the propagation delay.

Conclusions

GloPac and GRIP missions

- Principle Investigators using standard Internet protocols with no PEPs deployed.
- The user experience was positive even without PEPs.
- Larger file transfers for GRIP and GloPac were performed in the background using RSYNC for remote synchronization. As such, any TCP inefficiencies were not apparent to the user.

Future deployments

- Real-time delivery of larger data will be required an efficient use of the communication links will be necessary
- Either PEPs or an efficient, rate-based protocol such as Saratoga or both will be installed depending on the performance needs are architectural deployment.
 - PEP Performance is currently under investigation
- Use of only a rate-based protocol is preferred over deployment of PEPs in order to keep the communication system as simple as possible.
- Possible use of the Saratoga transport protocol to move large data sets (such as those generated by High-Altitude Imaging Wind and Rain Airborne Profiler) ground-to-ground once the Global Hawk lands

